
Comput Optim Appl
DOI 10.1007/s10589-007-9160-7

A bundle-type algorithm for routing
in telecommunication data networks

Claude Lemaréchal · Adam Ouorou ·
Georgios Petrou

Received: 31 October 2006 / Revised: 11 December 2007
© Springer Science+Business Media, LLC 2007

Abstract To optimize the quality of service through a telecommunication network,
we propose an algorithm based on Lagrangian relaxation. The bundle-type dual al-
gorithm is adapted to the present situation, where the dual function is the sum of a
polyhedral function (coming from shortest path problems) and of a smooth function
(coming from the congestion function).

Keywords Convex optimization · Routing · Multicommodity flows · Kleinrock
delay function

1 Introduction

1.1 The model

We consider the following problem

min f (y) :=
n∑

j=1

fj (yj)

C. Lemaréchal (�)
INRIA Rhônes-Alpes, 655 avenue de l’Europe, Montbonnot, 38334 Saint Ismier, France
e-mail: claude.lemarechal@inria.fr

A. Ouorou
France Telecom R&D, CORE/MCN, 38-40 rue du Général Leclerc, 92794 Issy-Les-Moulineaux
cedex 9, France

G. Petrou
EDF R&D, Osiris, 1 av. du Général de Gaulle, 92141 Clamart, France

C. Lemaréchal et al.

s.t. Axk = bk ∈ R
m, k = 1, . . . ,K,

(1.1)
K∑

k=1

xk = y ∈ R
n,

0 ≤ y < c, xk ≥ 0, k = 1, . . . ,K,

where

• A is the node-arc incidence matrix of a graph G = (V ,E) (m nodes, n arcs),
• xk are flow vectors representing K commodities between source nodes sk and sink

nodes tk , k = 1, . . . ,K ,
• bk ∈ R

m are vectors with two nonzero components (corresponding to an origin sk
and destination tk) such that

∑m
i=1 bk

i = 0,
• y is the total link flow vector,
• fj is proportional to the Kleinrock average delay function:

fj (yj) = yj

cj − yj

if 0 ≤ yj < cj (and +∞ otherwise), (1.2)

• c ∈ R
n is the vector of arc capacities.

Problem (1.1), often called multicommodity flow, occurs in data communication
networks and plays an important role in the optimization of network performances.
We mention here that the delay function may assume other forms than (1.1). Our
approach is significant only when the fj ’s are nonlinear. Another remark which will
be technically useful is that the feasible flows form a bounded set: they cannot exceed
the capacities.

1.2 Numerical solution methods: outline

Various methods have been proposed in the literature to solve the multicommodity
flow problem. Let us cite for example [25, 27], we refer to [22, 24] for a more com-
plete review. These methods can be classified according to three basic paradigms:

(i) Direct methods exploit the problem’s block structure. Most popular is flow de-
viation [8] because of its simplicity; it is a special case of the Frank-Wolfe
method [6], which works on a sequence of linearized problems. It has slow con-
vergence and many authors have tried to improve it.

(ii) Other classical mathematical programming algorithms (Newton, conjugate gra-
dient) have been adapted to the structure of (1.1); see [2] for example.

(iii) Some proposals adopt a dual point of view: Lagrangian relaxation is applied
to the constraints linking x and y. This results in a concave dual function to
be maximized, which can be done by a suitable algorithm such as proximal,
ACCPM, subgradient, This approach was originally proposed in [7], see
also [16] for a recent study.

Judged from a nonlinear optimization point of view, methods of type (i) suffer se-
rious convergence deficiencies. We illustrate them on Fig. 1, which assumes K = 1

A bundle-type algorithm for routing

Fig. 1 Instability of Frank-Wolfe

for simplicity (then y = x). The left part of the picture displays the polyhedron
{Ax = b, x ≥ 0}, as well as the level set f (x) = f (xS) passing through the current
iterate xS , supposedly close to optimality. The essential idea of flow deviation is to
linearize f at xS , so that (1.1) becomes a linear program (let us neglect the difficulty
coming from the constraint x < c). Now the right part of Fig. 1 shows that the so-
lution of this LP may jump from one extreme point to another, called P and P ′ on
the picture, if xS moves to x′S ; and P ′ may be far from P , even if xS and x′S are
close together. The effect of this instability on the convergence is disastrous, as is
demonstrated in [28]: if f̄ is the optimal value, we typically have f (xS) − f̄ � 1/S.

Approximating each fj to first order is thus not accurate enough, and this moti-
vates methods of type (ii), based on second-order approximations.

As for methods of type (iii), their motivation is the decomposable structure
of (1.1). The resulting solution algorithm is made of two parts. One (minimizing
the Lagrangian) treats each flow separately; the other (maximizing the Lagrangian
dual) has a complexity depending only on the number n of arcs in the network. Now
the aim of the present work is to introduce in this second part the second-order ap-
proximation that flow deviation is lacking. A similar idea was given quite recently
by [1]; maximizing the dual by the ACCPM algorithm was then tremendously im-
proved, both in terms of power (solving problems with n and m up to 105 and K up
to 106) and of speed (CPU times divided by hundreds).

1.3 The proposed algorithm

The crucial ingredient for the methods of class (iii) is the algorithm maximizing the
dual function. Here we do for bundle what [1] does for ACCPM, in a manner which
can be explained as follows.

A standard approach to maximize a concave function—call it θ(u)—is cutting
planes [3, 12], in which θ is iteratively approximated by richer and richer polyhe-
dral functions θ̂ . These θ̂ are successively maximized; but this results in instabili-
ties. A possible stabilization mechanism (the proximal bundle idea) appends to θ̂ a
quadratic term centered at some “favored” iterate û (essentially the best current iter-
ate).

Here, θ contains a well-isolated smooth component: θ = Φ +Π , where Φ is (con-
cave and) twice differentiable, while Π is indeed polyhedral. We therefore use cut-
ting planes to approximate Π only; stabilization is obtained thanks to the quadratic
approximation of Φ at û: a definitely natural quadratic term.

C. Lemaréchal et al.

This approach can also be explained with no reference to the proximal paradigm.
Maximizing a function θ(u) requires a model of θ , valid around the current iterate û.
Here, each component of θ has a natural model:

– the second-order quadratic approximation is best suited for the smooth function Φ ,
as in Newton’s method;

– the cutting-plane approximation is natural for the polyhedral function Π , as in
Kelley’s method.

Our approach thus appears as quite natural, as it totally eliminates the need for a
(somewhat artificial) proximal stabilization. By contrast, [1] keeps intact the (just as
artificial) interior-point stabilization.

The paper is organized as follows. We propose in Sect. 2 a (classical) Lagrangian
relaxation of (1.1) and in Sect. 3 our model of the dual function θ ; it uses a second-
order oracle for Φ and an ordinary first-order oracle for Π . Our adaptation of the
bundling technique to cope with this special model is the subject of Sect. 4, while
Sect. 5 recalls the aggregation mechanism, important for primal recovery. The algo-
rithm is detailed in Sect. 6, its convergence is established in Sect. 7, while Sect. 8
shows how to recover the primal optimal solution from the dual algorithm. Finally,
Sect. 9 gives some numerical results and we conclude in Sect. 10 with a general
discussion of our approach.

2 Lagrangian relaxation

As already mentioned, the material developed in this section goes back to [7]. Asso-
ciating with the coupling constraints

∑
k xk = y the dual variables u ∈ R

n, we define
the Lagrangian

L(x, y,u) =
n∑

j=1

fj (yj) +
n∑

j=1

uj

(
−yj +

K∑

k=1

xk
j

)

and we apply Lagrangian relaxation, as explained for example in [17]. We minimize
L(·, ·, u) for fixed u; here, this amounts to computing

Φj(uj) := min
0≤yj <cj

{fj (yj) − ujyj }, j = 1, . . . , n, (2.1)

Πk(u) := min{u�xk : Axk = bk, xk ≥ 0}, k = 1, . . . ,K (2.2)

(note that Φj = −f ∗
j , where f ∗ is the convex conjugate of the function f). It will be

convenient for the sequel to use the notation

Φ(u) :=
n∑

j=1

Φj(uj), Π(u) :=
K∑

k=1

Πk(u).

The dual problem is then to maximize with respect to u the so-called dual function,
namely: solve

max
u∈Rn

θ(u), where θ(u) := Φ(u) + Π(u). (2.3)

A bundle-type algorithm for routing

Fig. 2 Conjugating Kleinrock’s
function

In (2.1), the optimal yj is easy to compute (see Fig. 2): we obtain

yj (uj) =
⎧
⎨

⎩
cj −

√
cj

uj
if uj ≥ 1

cj
,

0 otherwise,
(2.4)

so that Φj has the expression

Φj(uj) =
{−(

√
cjuj − 1)2 if uj ≥ 1

cj
,

0 otherwise.
(2.5)

On the other hand, computing Π from (2.2) amounts to solving K independent
shortest path problems, each of which being posed between sk and tk and having arc
lengths uj . The next simple result says that this computation has to be done with
positive arc lengths only.

Proposition 2.1 Consider the set

U :=
{
u ∈ R

n : uj ≥ 1

cj

, j = 1, . . . , n

}
. (2.6)

For any u /∈ U , there is u′ ∈ U such that θ(u′) ≥ θ(u). As a result, (2.3) is not changed
if the constraint u ∈ U is inserted.

Proof This is Proposition 2 in [7]. �

Thus, to ease the computation of the Πk’s, the constraints uj ≥ 1/cj may be in-
serted into (2.3): this does not prevent the computation of a dual optimal solution and
does not change the optimal dual value.

3 Model of the dual function

Taking advantage of Proposition 2.1, we reformulate (2.3) as

max
u∈U

θ(u) := Φ(u) + Π(u) :=
n∑

j=1

Φj(uj) +
K∑

k=1

Πk(u). (3.1)

To solve it, we propose a hybrid method working as follows:

C. Lemaréchal et al.

– Each smooth function Φj is approximated by its second-order development, as
in Newton’s method. This development is made at a point—call it û—controlled
according to its (dual) objective value θ(û).

– Each polyhedral function Πk is approximated by cutting planes, as in Kelley’s
method [3, 12].

In a way, the above method can be viewed as a bundle variant [18] (see also [1]), in
which

– the cutting-plane paradigm is applied to a part of the (dual) objective function,
namely Π ,

– stabilization around û is obtained by the Newtonian term u�∇2Φ(û)u, instead of
an artificial ‖u‖2 weighted by a hard-to-tune penalty coefficient.

Since Lagrangian relaxation is column generation, our algorithm can also be viewed
as a Dantzig-Wolfe variant where the masters are suitably stabilized.

At each iteration s, (2.2) is solved with the iterate us ; this provides a shortest
path xk(us), which in turn provides an upper linearization: by definition, Πk(u) ≤
u�xk(us) for all u ∈ R

n. Accumulating these shortest paths, we form at the current
iteration S the K polyhedral functions

Π̂k(u) := min
s=1,...,S

u�xk(us) ≥ Πk(u), for all u ∈ R
n. (3.2)

As for the Φj ’s, note that they have analytic derivatives over the feasible domain:

Φ ′
j (uj) =

√
cj

uj

− cj , Φ ′′
j (uj) = −1

2uj

√
cj

uj

if uj >
1

cj

(3.3)

and that −Φ ′
j (uj) = yj (uj) is the optimal yj of (2.4).

In addition to the Π̂k’s, suppose also that a stability center û ∈ U is available at
the current iteration. Analogously to Πk , each Φj will be replaced by its quadratic
approximation near û:

Φ̃j (uj) := Φj(ûj) − yj (ûj)(uj − ûj) + 1

2
Mj(uj − ûj)

2 [� Φj(uj)], (3.4)

where yj (ûj) = −Φ ′
j (ûj) is given by (2.4) and Mj := Φ ′′

j (ûj) by (3.3).
We will use the notation

Φ̃(u) :=
n∑

j=1

Φ̃j (uj), Π̂(u) :=
K∑

k=1

Π̂k(u), θ̂(u) := Φ̃(u) + Π̂(u)

and the essential part of an iteration will be to maximize θ̂ , which can be viewed as
a model of the true dual function θ in (3.1). We also find it convenient to use the
change of variable h = u − û: we solve

max{Φ̃(û + h) + Π̂(û + h) : û + h ≥ 1/c}.

A bundle-type algorithm for routing

Introducing additional variables πk (connoting Π̂k), this is the quadratic program-
ming problem

max
h,π

{
Φ̃(û + h) +

K∑

k=1

πk

}

s.t. πk ≤ (û + h)�xk(us), for

{
k = 1, . . . ,K,

s = 1, . . . , S,

hj ≥ 1

cj

− ûj , j = 1, . . . , n.

(3.5)

Note that the somewhat artificial constraint û + h = u ≥ 1/c is useful for a fast
computation of Πk(u) in (2.2); but it is even more useful for the dual algorithm:
from (2.5), Φ ′′

j (uj) = 0 if uj < 1/cj . If such a u is a û, then Φ̃j will degenerate

and (3.5) will perhaps be unbounded from above.1

Proposition 3.1 Problem (3.5) has a unique optimal solution (ĥ, π̂), with π̂ k =
Π̂k(û + ĥ).

Proof From standard convex analysis, each function Π̂k is concave; and each Φ̃j is
a strictly concave quadratic function (from (3.3), Mj < 0!): θ̂ has a unique maximum
û+ ĥ, making up the h-part of the optimal solution in (3.5); and each πk has to reach
its maximal value, namely Π̂k(û + ĥ). �

Note to conclude this section that our approach can of course be applied to the
maximization of any concave function θ made up of two parts: a polyhedral one
(given by an oracle) and a smooth one (whose Hessian is at hand). In (3.4), Mj is the
jj th entry of the Hessian (here diagonal) of the smooth part of θ .

4 Ascent steps, null-steps and backtracking

The resolution of (3.5) predicts an increase

δ := θ̂ (û + ĥ) − θ(û) (4.1)

in the dual objective function. Of course, δ ≥ 0 since θ(û) ≤ θ̂ (û) ≤ θ̂ (û + ĥ). Be-
sides, we will see in Proposition 5.3 that δ is an optimality measure of û: it is natural

1This difficulty can be eliminated, though. Observe in (1.1) that the constraint y ≥ 0 is redundant; each fj

of (1.2) can therefore be extended as we like on R− . A convenient extension is

fj (yj) :=
y2
j

c2
j

+ yj

cj
for yj ≤ 0,

which is C2 and strongly convex; its conjugate enjoys the same properties and the algorithm can work.

C. Lemaréchal et al.

to stop the algorithm if δ is small. So δ is indeed positive unless the algorithm is about
to stop.

Standard bundle compares the actual increase θ(û+ ĥ)− θ(û) to δ; if it is deemed
insufficient, (3.5) is solved again with an enriched model; this is the bundling process.
For reasons that will soon become apparent, this technique needs amendment. In our
variant, the candidate for the next iteration is not the output û + ĥ from (3.5) but
rather u+ := û + t ĥ, for some suitable stepsize t ∈]0,1] and a sufficient increase is
quantified by

[θ(u+) =] θ(û + t ĥ) ≥ θ(û) + κtδ, (4.2)

κ ∈]0,1[being a fixed tolerance. If (4.2) holds, û can safely be moved to the defi-
nitely better point u+; iteration S is terminated, this is an ascent step in the bundle
terminology. Theorem 7.4 will show that infinitely many such updates do imply con-
vergence of the algorithm.

Now assume (4.2) does not hold. Because θ̂ is concave,

θ̂ (u+) ≥ (1 − t)θ̂ (û) + t θ̂ (û + ĥ)

≥ (1 − t)θ(û) + t θ̂ (û + ĥ)

= θ(û) + tδ.

Failure of (4.2) therefore implies θ̂ (u+) > θ(u+) + (1 − κ)tδ; this means that θ̂ ap-
proximates θ badly. Then we have to decide which of the approximations Φ̃ and Π̂

needs improvement.
Improvement of Π̂ is done by the bundling process, which appends in the de-

finition of Π̂ the new data coming from the oracle (2.2), called at û + t ĥ. How-
ever, bundling will be of no avail if (ĥ, π̂) is still feasible in the next QP (3.5)—see
Lemma 7.5 below. To avoid an infinite loop, a sufficient improvement must be re-
quired on the next Π̂ ; this is the whole business of a bundle method. We quantify the
required improvement as

Π(û + t ĥ) ≤ Π(û) + t[Π̂(û + ĥ) − Π(û)] − κ ′tδ, (4.3)

κ ′ ∈]0, κ] being another positive tolerance (on Fig. 3, (4.3) holds when Π(u+) lies
under the point marked A). By concavity of Π̂ , this implies that Π(u+) is “sub-
stantially” smaller than Π̂(u+); and note that the next Π̂ is going to have the value

Fig. 3 The new linearization is
“substantially” smaller than Π̂

at u+

A bundle-type algorithm for routing

Π(u+) at u+. If (4.3) holds, û is kept as it is; again iteration S is terminated, this is
a null-step.

When (4.3) does not hold, Π̂(u+) can be considered as a good approximation
of Π(u+); so if (4.2) does not hold, it is Φ̃ that approximates Φ badly. To improve it,
we decrease t , compute the new value of θ and test (4.2), (4.3) again; we will make
sure in Lemma 7.1 below that this backtracking phase cannot go forever.

Let us summarize this section. An iteration of our variant solves (3.5) and tests
u+ = û + t ĥ, with three possible outputs:

– if (4.2) holds, an ascent step is made: û is moved to u+ and the model Π̂ is updated;
– if (4.2) does not hold but (4.3) holds, a null-step is made: û is kept as it is and Π̂

is updated;
– if neither (4.2) nor (4.3) holds, a backtracking is made: t is decreased and the

oracle (2.2) is called at the new u+, which is closer to û.

Standard bundle has no backtracking: it merely uses t = 1 and overlooks (4.3). Actu-
ally, if we had θ = Π and θ̂ = Π̂ , (4.3) could not hold when (4.2) does not hold. In
the present variant, this argument is destroyed by the Φ̃-part of θ̂ .

5 Toward primal recovery: the aggregate linearization

The necessary material to state the dual algorithm is now available. However, remem-
ber that our problem is rather (1.1) than (2.3). To establish the connection between
the two resolutions, we need some more sophisticated material from convex analysis.
First we introduce some notation.

• The normal cone NU(u) is the set of vectors ν ∈ R
n such that (v − u)�ν ≤ 0 for

all v ∈ U ;
• y(û) ∈ R

n will be the vector whose components are yj (ûj), see (2.4);
• M := ∇2Φ(û) will be the diagonal (negative definite) n × n matrix whose jj th

element is Mj = Φ ′′
j (ûj) of (3.4);

• the unit simplex of R
S will be 	S := {α ∈ R

S : ∑s αs = 1, α ≥ 0}.
Now we recall some elementary subdifferential calculus. Denote by

∂θ(u) := −∂(−θ)(u) = {g ∈ R
n : θ(v) ≤ θ(u) + (v − u)�g for all v ∈ R

n}

the “superdifferential” of the concave function θ at u.

• The superdifferential of the smooth concave function Φ̃ is its gradient: ∂̃Φ(u) =
−y(û) + M(u − û);

• the superdifferential of Π̂k is the convex hull of the active slopes in (3.2):

∂̂Πk(u) =
{

x̂k =
S∑

s=1

αsxk(us) : α ∈ 	S,αs = 0 if u�xk(us) > Π̂k(u)

}
; (5.1)

C. Lemaréchal et al.

• the superdifferential of θ̂ is the sum of superdifferentials:

∂̂θ(u) = −y(û) + M(u − û) +
K∑

k=1

∂̂Πk(u).

This allows us to describe the solution of (3.5):

Proposition 5.1 The unique optimal solution ĥ of (3.5) is characterized as follows:
for some x̂k ∈ ∂̂Πk(û + ĥ), k = 1, . . . ,K and ν ∈ NU(û + ĥ),

ĥ = M−1ĝ, where ĝ := y(û) − x̂ + ν, x̂ :=
K∑

k=1

x̂k ∈ ∂̂Π(û + ĥ). (5.2)

Proof Watching for various changes of sign, apply the optimality condition [11, The-
orem VII.1.1.1(iii)]: there is some supergradient in ∂̂θ(û + ĥ) lying in NU(û + ĥ). In
view of the above-mentioned calculus rules, this writes

−y(û) + Mĥ +
K∑

k=1

x̂k = ν,

which is just (5.2). �

With the particular form of U , the property ν ∈ NU(û + ĥ) means that ν ≤ 0 is in
complementarity with û + ĥ − 1/c ≥ 0.

Note that each x̂k is a convex combination as described in (5.1). To make up x̂,
one needs K sets of convex multipliers αk ∈ 	S , which indeed are the KKT multipli-
ers (not necessarily unique) associated with the constraint involving πk in (3.5); any
reasonable QP solver computes them, in addition to the optimal (ĥ, π̂). In the next
statement, this remark could also be used for an alternative proof, based on comple-
mentarity slackness:

Lemma 5.2 With the notation of Proposition 5.1, Π̂k(u) ≤ u�x̂k for all u ∈ R
n.

Equality holds for u = û + ĥ. In particular, Π̂(û + ĥ) = (û + ĥ)�x̂.

Proof Apply (5.1) with u = û+ ĥ: x̂k = ∑
s αsxk(us) for some α ∈ 	S . The required

inequality is therefore clear from the definition (3.2) of Π̂k . Besides, this convex
combination involves only indices s such that (û + ĥ)�xk(s) = Π̂k(û + ĥ), so the
stated equality holds as well; and the last statement follows by summation over k. �

The whole business of dual convergence will be to drive δ to 0, and this has inter-
esting consequences:

Proposition 5.3 With the notation of Proposition 5.1, δ = δh + δx + δν , where

δh := −1

2
ĥ�Mĥ ≥ 0, δx := û�x̂ − Π(û) ≥ 0, δν := ĥ�ν ≥ 0. (5.3)

A bundle-type algorithm for routing

Besides, for all u ∈ U ,

θ(u) ≤ θ(û) + δx + δν − (u − û)�ĝ. (5.4)

Proof Write the definition (4.1) of δ, using (3.4) and Lemma 5.2:

δ = Φ(û) − ĥ�y(û) + 1

2
ĥ�Mĥ + (û + ĥ)�x̂ − Φ(û) − Π(û)

= 1

2
ĥ�Mĥ + [û�x̂ − Π(û)] − ĥ�(y(û) − x̂)

and (5.3) follows because y(û) − x̂ = Mĥ − ν from (5.2).
Then remember from (3.3) that M is negative semi-definite: δh ≥ 0. The property

δx ≥ 0 comes from Lemma 5.2; and δν = (û + ĥ − û)�ν is nonnegative because
ν ∈ NU(û + ĥ).

Now take an arbitrary u ∈ U . Using feasibility of x̂k in (2.2), concavity of Φ and
definition of normal cones,

Π(u) ≤ u�x̂ = û�x̂ + (u − û)�x̂,

Φ(u) ≤ Φ(û) − (u − û)�y(û),

0 ≤ (û + ĥ − u)�ν = (û − u)�ν + ĥ�ν.

Summing up and disclosing appropriate δ-values:

θ(u) ≤ Π(û) + δx + Φ(û) + (u − û)�(−ĝ) + δν,

which is just (5.4). �

Thus, when δ is small, δh, δx and δν are small. If M behaves itself, ‖ĝ‖ is also
small and (5.4) shows that û is approximately optimal in (3.1).

6 The algorithm

We are now in a position to state the algorithm. Knowing the expression of the Klein-
rock function, it works with the help of the “oracle” solving (2.2) for given u ≥ 1/c.
It uses the improvement parameters κ and κ ′ satisfying 0 < κ ′ ≤ κ < 1, and the stop-
ping tolerance δ ≥ 0. The starting point u1 ∈ U is given, as well as the initial shortest
paths xk(u1) forming the initial bundle, and the initial quadratic model Φ̃ .

Algorithm 6.1 (Combined Newton-cutting-plane algorithm (Ncp)) Initialize S = 1,
û = û1 = u1.
STEP 1 (Trial point finding). Find ĥ, x̂ = x̂S and ĝ = ĝS as described by Proposi-

tion 5.1. Compute δ = δS by (4.1)
STEP 2 (Stopping test). If δS ≤ δ stop, returning û and x̂.
STEP 3 (Line-search). Set t = 1.

C. Lemaréchal et al.

STEP 3.1 (Oracle call). Set u+ := û + t ĥ. Compute xk(u+) from (2.2) and the
resulting values Π(u+), θ(u+).

STEP 3.2 (Ascent test). If (4.2) holds, set ûS+1 = u+; update the quadratic ap-
proximation Φ̃ .

Go to Step 4.
STEP 3.3 (Null-test). If (4.3) holds, set ûS+1 = ûS .

Go to Step 4.
STEP 3.4 (Interpolation). Select a new t “well inside” the segment]0, t[, say in

[0.01t, 0.99t].
Go to Step 3.1.

STEP 4 (Bundle updating and loop). For k = 1, . . . ,K , append xk(u+) obtained in
Step 3.1 to the bundle. Increase S by 1 and go to Step 1.

In Step 3.4, the simplest is to divide t by 2. More sophisticated interpolation for-
mulae can be designed, in the spirit of cubic fitting in NLP. They must however be
safeguarded, so as to satisfy the “well inside” property.

Remark 6.2 (Sum of max vs. max of sum) Our approximation of Π uses K indi-
vidual approximations Π̂k of (3.2). Traditional bundle methods actually ignore the
summation property Π = ∑

k Πk : they use just one supergradient, say ξ s ∈ ∂Π(us)

for each us , corresponding to the compound linearization u�ξ s of Π(u). Here, ξ s is
of course the sum of the shortest paths xk(us).

Storing S linearizations needs Sn elements (as opposed to the KSn elements
needed here). Besides, the Sth compound quadratic problem (3.5) simplifies to

max
u,π

{Φ̃(u) + π}

s.t. π ≤ u�
K∑

k=1

xk(us), for s = 1, . . . , S,

uj ≥ 1

cj

, j = 1, . . . , n,

which has just S linking constraints.
Even with the above simplification, Algorithm 6.1 needs potentially infinite mem-

ory. However, traditional bundle methods make use of the aggregate linearization x̂

revealed by Proposition 5.1: a “minimal” variant would approximate Π at iteration
S + 1 by a polyhedral function made up of two pieces only, namely

min{u�x̂S, u�ξS+1}.

Needless to say, these simplifications correspond to less accurate descriptions of Π ,
and are therefore paid by dual iterates u+ of probably lesser quality.

A bundle-type algorithm for routing

7 Dual convergence

In this section, we pretend that δ = 0 in Algorithm 6.1. Then we prove that
lim inf δS = 0; this implies that the algorithm will eventually stop if δ > 0. We use
the terminology introduced in Sect. 5. First we make sure that each backtracking
phase terminates.

Lemma 7.1 Assume κ + κ ′ ≤ 1; let −L ≤ −
 < 0 be lower and upper bounds on
the eigenvalues of M over the segment [û, û + ĥ]. Then (4.2) or (4.3) holds (or both)
whenever t ≤
/L.

Proof Suppose that neither (4.3) nor (4.2) holds. Subtracting and using definitions:

Φ(û + t ĥ) < Φ(û) − t[Π̂(û + ĥ) − Π(û)] + (κ + κ ′)tδ

= Φ(û) + t[Φ̃(û + ĥ) − Φ(û)] + (κ + κ ′ − 1)tδ

≤ Φ(û) + t[Φ̃(û + ĥ) − Φ(û)]

= Φ(û) + t

[
−y(û)�ĥ + 1

2
ĥ�Mĥ

]
.

Apply some mean-value theorem to Φ: for example, denoting by M̃ the Hessian of
Φ at some point between û and û + t ĥ

Φ(û + t ĥ) = Φ(û) − ty(û)�ĥ + t2

2
ĥ�M̃ĥ,

so that

−ty(û)�ĥ + t2

2
ĥ�M̃ĥ < t

[
−y(û)�ĥ + 1

2
ĥ�Mĥ

]
.

Divide by t > 0 and simplify to obtain

−tL‖ĥ‖2 ≤ t ĥ�M̃ĥ < ĥ�Mĥ ≤ −
‖ĥ‖2 < 0. �

Remark 7.2 Thus, Step 3 cannot loop forever: if Step 3.4 produces t+ ≤ 0.99t , say,
exit to Step 4 will occur after at most (log
 − logL)/ log 0.99 cycles.

Another consequence is that t is “not too small” when Step 3 terminates: if t+ ≥
0.01t , say, this termination produces t ≥ 0.01
/L.

Establishing convergence of a bundle method amounts to proving two distinct
results:

– If infinitely many ascent steps are performed, the stability centers û form a maxi-
mizing sequence of θ .

– If the sequence of stability centers stops at some û, then this û maximizes θ (pos-
sibly infinitely many null-steps being needed to prove this property).

These results are proved respectively in the next two sections.

C. Lemaréchal et al.

7.1 Case of infinitely many ascent steps

To simplify our analysis, we will assume here that (1.1) is feasible. This guarantees
the Slater property, which is a key for an appropriate primal-dual behaviour:

Lemma 7.3 If (1.1) has a feasible point, then θ is sup-compact on U : for each z ∈ R,
the set of u ∈ U such that θ(u) ≥ z is (closed and) bounded. As a result, (3.1) has a
unique solution.

Proof Closedness classically follows from upper semi-continuity of a dual function.
Let x̊ and ẙ = ∑

k x̊k make a feasible point. Because each ẙj < cj , we can find ε > 0
and B > 0 such that

for j = 1, . . . , n, ẙj ≤ yj ≤ ẙj + ε
⇒ fj (yj) ≤ B.

Take an arbitrary u ∈ U ⊂ R
n+ and set yu := ẙ + ε u

‖u‖ . By definition of the dual
function,

θ(u) ≤ L(x̊, yu,u) = f (yu) + u�
(

−ẙ − ε
u

‖u‖ +
K∑

k=1

x̊k

)
= f (yu) − ε‖u‖;

but 0 ≤ yu
j ≤ẙj + ε for each j (0 ≤ uj ≤ ‖u‖!), hence f (yu) ≤ nB . We have proved

that z ≤ θ(u) implies z ≤ nB − ε‖u‖.
Thus, θ(u) → −∞ when ‖u‖ → +∞ in U . This classically implies that (3.1)

has at least one optimal solution. Finally, this solution is unique because of strict
concavity: Π is concave and (3.3) shows that Φ is strictly concave. �

Sup-compactness classically eliminates the duality gap and allows the characteri-
zation of primal-dual solutions via the superdifferential of the dual function. We will
recover these results in a constructive way, by establishing appropriate convergence
properties of the sequences û and (y(û), x̂) (the latter being established in Sect. 8
below).

Theorem 7.4 Assume that (1.1) has a feasible point and let Algorithm 6.1 generate
an infinite sequence S of ascent steps. Then the subsequences (δs)S , (ĥs)S and (ĝs)S
tend to 0; and the sequence ûs tends to the optimal solution of (3.1).2

Proof The increasing sequence θ(ûs) has a limit, not larger than the optimal value θ̄

of (3.1). From Lemma 7.3, the sequence ûs is bounded; let us show that the sequence
ĥ is bounded.

With the notation of Lemma 5.1, the definition of the normal cone NU(û + ĥ)

gives ν�(û − û − ĥ) ≤ 0, i.e. ν�ĥ ≥ 0. Using (5.2), this can be written

(Mĥ − y(û) + x̂)�ĥ ≥ 0.

2Note that the whole sequence ûs coincides with (ûs)S , since ûs+1 = ûs if s /∈ S .

A bundle-type algorithm for routing

Now M is negative definite and (3.3) shows that its largest eigenvalue is bounded
away from 0; say ĥ�Mĥ ≤ −ε‖ĥ‖2. So we can write

−ε‖ĥ‖2 ≥ ĥ�Mĥ ≥ (y(û) − x̂)�ĥ ≥ −‖y(û) − x̂‖‖ĥ‖,
i.e. ‖ĥ‖ ≤ ‖y(û) − x̂‖. Because y(û) and x̂ are both bounded, this shows that ĥ is
bounded.

Then the eigenvalues L > 0 [resp.
 > 0] of Lemma 7.1 are bounded from above
[resp. away from 0]. Remembering Remark 7.2, t is bounded away from 0: t ≥ t > 0
(say with t = 0.01
/L). Then we have from (4.2)

θ(ûs+1) ≥ θ(ûs) + κtδs if s ∈ S,

θ(ûs+1) = θ(ûs) otherwise

and we obtain by summation
∑

s∈S δs ≤ [θ̄ − θ(u1)]/κt : (δs)S tends to 0. The three
components of δs in (5.3) tend to 0 as well, and this is also true of the subsequences
{ĝs}S and {ĥs}S .

Then take a cluster point of ûs and pass to the limit in (5.4): this cluster point has
to be the unique optimal solution of (3.1). �

Note that, if (1.1) has no feasible point, then θ(û) will typically tend to +∞; δ

has no reason to tend to 0, the stop in Algorithm 6.1 will never occur. To prevent this
situation, it is wise to insert an “emergency stop” when θ(û) is unduly large.

7.2 Case of finitely many ascent steps

First we show that the next QP will modify the present ĥ (remember from Proposi-
tion 3.1 that Π̂(û + ĥ) = π̂):

Lemma 7.5 If (4.3) holds, the new linearization x(û + t ĥ) satisfies

(û + ĥ)�x(û + t ĥ) ≤ Π̂(û + ĥ) − κ ′δ. (7.1)

Proof Use simplified notation: set z := (û + ĥ)�x+, with x+ := x(û + t ĥ) = x(u+).
Because x+ ∈ ∂Π(u+), we have by definition Π(û) ≤ Π(u+) − t ĥx+; hence

ĥ�x+ ≤ [Π(u+) − Π(û)]/t , so that

z = Π(u+) + (1 − t)ĥ�x+ ≤ Π(u+) + 1 − t

t
[Π(u+) − Π(û)]

= 1

t
Π(u+) − 1 − t

t
Π(û).

Now use (4.3) to bound Π(u+):

z ≤ 1

t
Π(û) + Π̂(û + ĥ) − Π(û) − κ ′δ − 1 − t

t
Π(û),

which is just (7.1). �

C. Lemaréchal et al.

Fig. 4 The new linearization
passes under Π̂(û + ĥ)

The proof of the next result uses explicitly the fact that all linearizations are stored
in the bundle: to accommodate the bundle compression alluded to at the end of Re-
mark 6.2, a more sophisticated proof would be required, along the lines of [11, The-
orem XV.3.2.4].

Theorem 7.6 Suppose the stability center stops at some iteration S: ûs+1 = ûs for
all s ≥ S. Then δs → 0 and ûS is the optimal solution of (3.1).

Proof The situation is as follows: at all iterations s following S, û = ûS , M and
y(û) are fixed; δ = δs forms a nonincreasing sequence since (3.5) has more and more
constraints; Proposition 5.3 then guarantees that ĥ = ĥs is bounded. It follows that
us+1 = û + t shs is also bounded, as lying in the segment [û, û + ĥs]; hence x(us) ∈
∂Π(us) is bounded ([11, Proposition VI.6.2.2]).

Write (7.1) and the definition (3.2) of Π̂ at the sth iteration: for all s > S and all
r ≤ s,

(û + ĥs)�x(us+1) + κ ′δs ≤ Π̂(û + ĥs) ≤ (û + ĥs)�x(ur),

so that

κ ′δs ≤ (û + ĥs)�[x(ur) − x(us+1)] ≤ B‖x(ur) − x(us+1)‖,
where we have used the Cauchy-Schwarz inequality and B is a bound for ‖û + ĥs‖.
Now assume δs ≥ ε > 0 for all s. Then

‖x(ur) − x(us+1)‖ ≥ κ ′ε
B

for all s > S and all r ≤ s.

In words: around each x(ur), there is a ball of fixed radius κ ′ε/B which cannot
contain any other x; because the x’s are confined in a bounded set, this is impossible.

It follows that the monotone sequence δs tends to 0, pass to the limit in (5.4) to
establish optimality of û. �

8 Primal recovery

It is known that convergence of the dual algorithm has its counterpart concerning the
primal problem. However, we solve here (3.1), while the dual of (1.1) is rather (2.3).
The issue is therefore more delicate, especially when infinitely many ascent steps are
performed; we analyze this case first.

A bundle-type algorithm for routing

Theorem 8.1 Make the assumptions of Theorem 7.4. Then:

– The subsequence {y(us)}s∈S tends to the unique y-optimal solution of (1.1);
– for k = 1, . . . ,K , the subsequences {x̂k,s}s∈S are bounded and any of their cluster

points makes up an x-optimal solution of (1.1).

Proof We already know from Theorem 7.4 that {δs}S , {ĥs}S and {ĝs}S tend to 0. We
also know that ûs has a limit ū; therefore y(ûs) → y(ū) and we proceed to prove that
{x̂s}S → y(ū). Note that {ûs + ĥs}S → ū.

Define the set J ∗ := {j = 1, . . . , n : ūj = 1/cj } of artificial constraints that are
active at ū.

– For j /∈ J ∗, ūj > 1/cj so that ûs
j + ĥ

j
j > 1/cj for s ∈ S large enough. The property

νs ∈ NU(ûs + ĥs) therefore implies νs
j = 0, hence x̂s

j = yj (û
s)− ĝs

j tends to yj (ū).
– For j ∈ J ∗, yj (ū) = 0; hence yj (û

s) → 0 and x̂s
j → 0 because, from (5.2),

0 ≤ x̂s
j = yj (û

s) − ĝs
j + νs

j ≤ yj (û
s) − ĝs

j → 0.

Piecing together, we see that

{x̂s − y(ûs)}S → 0. (8.1)

Now write

θ(ûs) = Φ(ûs) + Π(ûs) = f (y(ûs)) − (ûs)�y(ûs) + Π(ûs)

and pass to the limit for u ∈ S :

θ(ū) = f (y(ū)) − ū�y(ū) + Π(ū).

But observe from (8.1) that

−ū�y(ū) + Π(ū) = lim
s∈S

[−(ûs)�x̂s + Π(ûs)] = lim
s∈S

δs
x

where we have used the notation of Proposition 5.3. Since {δs
x}S → 0,

θ(ū) = f (y(ū)). (8.2)

Finally, we know that the subsequences {x̂k,s}S are bounded. Consider a cluster
point: say, with S ′ ⊂ S , {x̂k,s}S ′ → x̄k for k = 1, . . . ,K . The x̄k’s are feasible in (1.1)
and they sum up to y(ū): (x̄, y(ū)) makes a feasible point in (1.1). In view of (8.2),
weak duality tells us that this point is primal optimal. �

The case of finitely many ascent steps is just easier, as ûs reaches its limit ū for
some finite s.

Theorem 8.2 Suppose that the stability center stops at some iteration S. Then the
conclusions of Theorem 8.1 hold, with S replaced by the whole sequence S + 1,
In fact, ûS is the optimal solution of (3.1).

C. Lemaréchal et al.

Proof Invoke Theorem 7.6: the whole sequences δs , ĥs and ĝs converge to 0. Then
proceed exactly as for Theorem 8.1, with the simplifying property that ûs = ū for all
s > S. �

Note that this result makes no assumption about primal feasibility . . . and yet
proves primal existence! This has an interesting consequence:

Corollary 8.3 Suppose that (1.1) has no feasible point. Then the dual function θ does
not reach its maximum.

Proof Suppose for contradiction that (3.1) has an optimal solution ū. Initialize Algo-
rithm 6.1 with u1 = ū. There can be no descent step and Theorem 8.2 establishes the
existence of an optimal primal solution. �

9 Numerical illustrations

To get a feeling of the numerical merits of our approach, we benchmark it on 16 test-
problems against two implementations of its direct concurrent, namely the standard
bundle method, which we briefly recall now.

If no attention is paid to its smoothness, Φ can be approximated via the lin-
earizations Φ̄s

j (uj) := Φj(uj)− (uj −us
j)

�yj (u
s
j), instead of the quadratic functions

Φ̃j (uj) of (3.4). Then Φ can be approximated just as Π by a polyhedral function (call
it Φ̂) instead of the quadratic function Φ̃ of (3.4); then a bundle method maximizes
the resulting polyhedral approximation Φ̂ + Π̂ of θ , stabilized by a quadratic term
1
2t

‖u − û‖2; t > 0 is a parameter. Standard bundle methods maximize this approxi-
mation, and then manage the stability center û just as in Algorithm 6.1 (except that
no backtracking is necessary).

An implementation in the spirit of the present paper uses the individual approxi-
mations Φj(uj) ≤ Φ̂j (uj) := mins Φ̄s

j (uj), thus replacing (3.5) by

max
h,φ,π

{
n∑

j=1

φj +
K∑

k=1

πk − 1

2tS
‖h‖2

}

s.t. φj ≤ Φ̄s
j (ûj + hj), j = 1, . . . , n,

πk ≤ (û + h)�xk(us), k = 1, . . . ,K,

}
s = 1, . . . , S,

hj ≥ 1

cj

− ûj , j = 1, . . . , n.

We will refer to this implementation as bfull, as it fully splits the approxima-
tion of θ . Now remember Remark 5: ignoring the summation in Φ , we can also use
the compound (less accurate) polyhedral approximation Φ(u) ≤ mins

∑
j Φ̄s

j (uj). In

A bundle-type algorithm for routing

compensation, the resulting quadratic program simplifies to

max
h,φ,π

{
φ +

K∑

k=1

πk − 1

2tS
‖h‖2

}

s.t. φ ≤
n∑

j=1

Φ̄s
j (ûj + hj),

πk ≤ (û + h)�xk(us), k = 1, . . . ,K,

⎫
⎪⎪⎬

⎪⎪⎭
s = 1, . . . , S,

hj ≥ 1

cj

− ûj , j = 1, . . . , n.

We also compare our method to this implementation, referred to as bhalf: it uses
only a half of the splitting possibilities in θ .

With Algorithm 6.1 (referred to as Ncp), this makes three solvers, which have been
implemented in C on a bi-processor Intel Xeon (2.4 GHz, 1.5 GB RAM) under Linux
operating system. Both standard bundle variants are home-made implementations of
[14] (in particular for the t-management); Dijkstra’s algorithm is used for the shortest
path problems and the various QP are solved by Cplex 10.0. We use κ = κ ′ = 0.1 in
Algorithm 6.1; the stopping criterion is δ = 10−6 for Ncp and ε = 10−6 for bfull
and bhalf. We group the commodities by source nodes so that each computation of
Π calls at most m times Dijkstra’s algorithm.

The results are summarized in Table 1.

– The first group of 4 columns describes the 16 test problems, ranked by number
K of commodities (recall that the number of dual variables is n). Problems 3, 7,
10 and 13 are the random networks already used in [24]. Problems 1 and 4 are
nso22h and nso148 of [9], well known in the convex optimization community. The
remaining test problems are based on actual networks.

– The next group of columns gives the number of QP solved. This is also the number
of oracle calls for both variants of standard bundle; for Ncp, add the number of
backtracks (given in parenthesis).

– Computing times are in seconds; they are mainly indicative and would probably
change substantially with the use of a specialized QP solver such as [4, 13, 15].

– For each test-problem, Ncp obtains the best θ -value, which is given in the last
column. The previous two columns give the final relative gap obtained by the two
variants of standard bundle.

This table is rather eloquent. In terms of accuracy, all methods are comparable,
except three failures of bhalf; but Ncp is drastically faster. First, it always requires
less iterations. Also, the work per iteration is definitely smaller for bhalf, which
solves a much cheaper quadratic program. Nevertheless, its computing time is over-
whelmed by the two others’, even forgetting the three instances where the stopping
criterion could not be reached.

If comments on the behaviour of Ncp should be ventured, we could observe that
the number of QP resolutions is remarkably and consistently small. This means that
the polyhedral part Π of θ is easily approximated by the polyhedral model Π̂ (only

C. Lemaréchal et al.

Ta
bl

e
1

C
om

pa
ri

so
n

of
A

lg
or

ith
m

6.
1

(N
c
p

)
w

ith
tw

o
al

te
rn

at
iv

e
st

an
da

rd
bu

nd
le

im
pl

em
en

ta
tio

ns
(b
f
u
l
l

an
d
b
h
a
l
f

).
N

um
be

r
of

ba
ck

tr
ac

ks
fo

r
N
c
p

is
gi

ve
n

in
pa

re
nt

he
si

s

Pb
m

n
K

It
er

at
io

ns
To

ta
lC

PU
Fi

na
la

cc
ur

ac
y

w
.r.

t.
N
c
p

be
st

θ
(f

ro
m
N
c
p

)

N
c
p

b
f
u
l
l

b
h
a
l
f

N
c
p

b
f
u
l
l

b
h
a
l
f

b
f
u
l
l

b
h
a
l
f

1
14

22
23

12
(8

8)
19

64
5

0.
03

0.
20

28
6.

2
0.

10
−6

10
3.

41
20

19

2
19

68
30

5
(6

)
11

16
0.

02
0.

14
0.

08
10

−7
0.

8.
99

49
92

3
60

28
0

10
0

7
(9

5)
14

93
0.

20
1.

47
8.

01
0.

0.
53

.0
80

76
7

4
61

14
8

12
2

7
(8

)
24

16
7

1.
07

8.
84

61
.0

9
0.

2
×

10
−8

15
1.

92
68

69

5
20

64
13

3
7

(8
)

16
15

6
0.

35
2.

67
70

.5
9

0.
5

×
10

−8
39

.6
35

46
2

6
12

2
33

2
16

2
9

(9
0)

21
30

9
0.

61
5.

23
49

5.
4

0.
10

−8
27

6.
32

13
57

7
10

0
60

0
20

0
7

(9
6)

17
19

0
0.

78
6.

91
25

0.
6

10
−8

2
×

10
−8

84
.9

67
48

3

8
30

72
33

5
7

(1
04

)
24

10
00

a
0.

13
3.

56
59

82
.1

10
−7

3
×

10
−6

36
.4

51
71

6

9
21

68
42

0
7

(8
)

42
15

1
5.

62
88

.6
6

85
6.

5
0.

6
×

10
−7

68
.8

38
95

8

10
10

0
80

0
50

0
10

(3
04

)
16

27
4

9.
60

26
.3

2
20

61
4

×
10

−8
8

×
10

−7
13

9.
09

65
14

11
67

17
0

76
1

8
(1

33
)

32
15

8
4.

84
64

.2
6

40
9.

3
×

10
−8

5
×

10
−8

10
9.

89
55

82

12
34

16
0

94
6

5
(6

)
14

28
5

1.
03

12
.2

0
16

50
.2

5
×

10
−8

5
×

10
−8

19
.5

66
68

2

13
30

0
20

00
10

00
11

(3
19

)
22

56
9

73
.3

7
32

2.
51

30
56

4.
7

×
10

−9
2

×
10

−7
30

4.
38

94
62

14
48

19
8

15
83

9
(8

0)
22

80
3

13
.0

9
68

.4
5

5
h

45
10

−7
4

×
10

−7
13

5.
46

31
82

15
81

18
8

23
10

3
(4

)
19

10
00

a
2.

44
30

8.
51

28
h

3
×

10
−7

9
×

10
−4

41
.7

91
84

0

16
12

2
34

2
28

81
9

(7
3)

30
10

00
a

31
1.

85
76

4.
5

42
h

2
×

10
−7

2
×

10
−2

24
2.

71
47

71

a F
ai

lu
re

s
to

ob
ta

in
in

g
re

qu
ir

ed
ac

cu
ra

cy

A bundle-type algorithm for routing

Table 2 Comparison of Ncp with PM and ACCPM on four problems

Problem 3 7 10 13

m-n-K 60-280-100 100-600-200 100-800-500 300-2000-1000

Ncp 7 (15) 7 (96) 10 (304) 11 (319)

PM [2] 36 988 92 9949

ACCPM [10] 12 15 13 15

few null-steps are performed). However there are relatively many backtrackings,
which occur in the early iterations, when Newton’s model approximates Φ poorly;
more backtrackings are needed when the number n of arcs is larger. As for CPU, it
is mostly spent by the QP solver; computing Π is marginal in comparison, even for
example in Problem 16, which computes 73 × 2881 shortest paths.

Table 1 allows some rudimentary comparison with other existing methods. In fact,
the projection method [2] and ACCPM [10] were tested in [21] on Problems 3, 7, 10
and 13. Combining the results reported in [21, Table 4] with ours in Table 1 gives
Table 2. Only iteration numbers are recorded: no reliable comparison could be estab-
lished concerning computing times, the machines being so different. Recall that Ncp
has two iteration numbers: one for the QP and one for the oracle. For the other two
methods, these two numbers are equal.

10 Putting the method in perspective

We conclude with a discussion on some general aspects of this work.

(i) Field of applicability. Our method is of course not limited to the Kleinrock delay
function, not even to the format (1.1). We can have for example primal problems of
the type

minf (y) + h(x), Ax − By = d, x ∈ P. (10.1)

Minimizing the Lagrangian

L(x, y,u) = f (y) − u�By + h(x) + u�Ax − d�u

results in a dual function of the type

θ(u) = −f ∗(B�u) + Π(u) − d�u,

where Π(u) := minx∈P h(x) + u�Ax. No particular assumption is needed on P

and h, except that Π(u) must be computable for given u. Besides, polyhedral P

and h are preferred (see (iv) below).
Our approach is relevant whenever f ∗ is twice differentiable. According to [11,

Corollary X.4.2.10], this essentially requires an f which is twice differentiable, with

C. Lemaréchal et al.

a positive definite Hessian. Indeed, the Lagrangian has then a unique minimum y(u)

with respect to y, given by the system of equations

∇f (y) − B�u = 0.

From the implicit function theorem, y(u) is differentiable and our calculations in
Sect. 2 can be reproduced.

More generally, we have here a method to maximize a sum θ(u) = Φ(u) + Π(u)

of two concave functions, where Φ is twice differentiable. Three informations are
needed for each u: a supergradient of Π , as well as the differential elements ∇Φ(u)

and ∇2Φ(u). Note that, if Φ is known only through its gradient, the method can still
work via the approximation of ∇2Φ by a quasi-Newton strategy.

(ii) Other variants. Our algorithm is based on the so-called proximal bundle
method. Since several other forms exist (let us cite level bundle [20], dual bundle
[19], bundle-trust [26], see also [5]), a relevant question is whether they could be
considered as well. The above comments suggest that they are actually less adapted
to the present problem. It does make a lot of sense to approximate Φ [resp. Π] by
its second-order development Φ̃ [resp. polyhedral Π̂], and add these two approxima-
tions to obtain Φ̃ + Π̂ � Φ + Π .

Similarly, line-search is not the only possible strategy for backtracking. An alter-
native is for example the “curved search” of [18], in which u+ solves

max Φ̃(u) + Π̂(u) − 1

2t
‖u − û‖2, u ≥ 1/c. (10.2)

Interpreting 1/2t as a Lagrange multiplier, this is essentially equivalent to the trust-
region technique, familiar in nonlinear programming:

max Φ̃(u) + Π̂(u), ‖u − û‖ ≤ 	, u ≥ 1/c

(see [23] for a review). This approach is motivated by badly conditioned Hessians
∇2Φ: it annihilates the second-order term in Φ̃ when t ↘ 0 in (10.2) (or equivalently
	 ↘ 0). On the other hand, it requires one more resolution of the quadratic master
after each backtrack.

(iii) Convergence theory. Our results of Sect. 7 are limited to a rather particular
situation:

– Compactness automatically holds (Lemma 7.3); the stability centers are bounded,
and this makes life much easier to establish convergence.

– The quadratic term in the master problem (3.5) behaves itself: the
 and L of
Lemma 7.1 are appropriately bounded, which allows an easy proof of Theorem 7.4.
We do not know if this proof would be preserved with a more nasty Φ .

– Algorithm 6.1 keeps all the answers from the oracle (2.2) to make up Π̂ . Yet, as
alluded to in Remark 6.2, it is standard practice to clean the bundle when necessary,
to spare memory and ease the QP solver; this would kill the proof of Theorem 7.6.
This proof can probably be generalized but still, the work has to be done.

A bundle-type algorithm for routing

The smooth aspect of the method also presents some interest, in particular the in-
teraction between bundling and backtracking. In summary, an improved and more
thorough convergence theory deserves study.

(iv) Numerical efficiency. A question then naturally arises: does our variant really
deserve attention? Does it really improve standard implementations of the existing
optimization methods? Table 1 suggests a definite yes but what is the generality of
our experiments?

We believe that the whole issue is whether Π is well approximated by Π̂ , i.e.
whether Π looks like a polyhedral function (with respect to (i) above, so is the case if
P and h of (10.1) are polyhedral, with moderately many corners). Then bundling will
not be crucial, a few pieces in Π̂ will suffice. Newton will take care of approximating
Φ (very efficiently, as is well-known). As a result, convergence will be fast (namely
comparable to Newton). In terms of (1.1), the property Π � Π̂ means that the optimal
flows look like paths: they split only at few nodes, and in only few branches.

In fact, stabilization of a cutting-plane algorithm can be viewed as follows: we do
know that Π̂ overestimates the actual Π , sometimes drastically; the bundle technique
subtracts a (Euclidean) term from Π̂ , hopefully improving the approximation. Here
we subtract nothing. If Π̂ were really a bad approximation of Π , it would perhaps
be a better idea to introduce a stabilizing parameter t > 0 and solve the quadratic
master (10.2).

Note that the role of t is here different from that in (ii): the additional Euclidean
term is here supposed to improve the approximation Π̂ � Π and all possible values
of t > 0 are a priori suitable. In (ii), this Euclidean term was supposed to improve the
approximation Φ̃ � Φ and successive trials with decreasing values of t ∈]0,1] were
natural. As usual with the bundle approach, an appropriate management of t would
be delicate here; especially if it interferes with its backtracking role of (ii).

Our experiments, confirmed by those of [1], suggest that this stabilization is use-
less, at least with the instances that we have tested: they are probably close to mul-
ticommodity shortest path problems, i.e. their optimal flows are close to true paths.
This might be due to the fact that capacities are “comfortable”, in terms of the traffic
they have to accommodate. For stiffer instances, a refinement as suggested in (10.2)
might improve convergence if necessary. This technique might also become useful if
Π̂ is replaced by the compound approximation mentioned in Remark 6.2.

(v) Implementation questions. Needless to say, our numerical experiments in Sect. 9
are only preliminary; their ambition is limited to checking the viability of the method
and the role of the Newton term, as compared with a standard proximal term. More
intensive experiments should in particular involve serious comparisons with com-
petitors such as projection [2] or ACCPM [1, 10], on a set of common test-problems.
To be conclusive, however, these comparisons should involve large instances. The
quadratic master problem (3.5) then becomes large-scale and hard to solve by our
general-purpose CPLEX software: a more refined QP solver is then needed. Natural
alternatives are [4, 13, 15], already mentioned; but the approach given in [2] might
also be considered.

Let us elaborate on this last point. Neglecting for simplicity the constraint u ≥ 1/c,
(3.5) is easy to dualize. As in (2.4), (3.4), call ŷ := (∇f)−1(û) (a primal stabilizer)

C. Lemaréchal et al.

the unique point minimizing f (y)− û�y and form the quadratic approximation of f

around ŷ; say

f̃ (y) := ∇f (ŷ)�(y − ŷ) + 1

2
(y − ŷ)�∇2f (ŷ)(y − ŷ).

Then the dual of the simplified (3.5) consists in minimizing a quadratic function over
a product of simplices, namely

min f̃

(
K∑

k=1

xk

)
, xk ∈ conv{xk(u1), . . . , xk(uS)}, k = 1, . . . ,K.

This problem is very similar to the one considered in [2]; accordingly, it might be
solved by a similar method. Alternatively, we can say that our Newton-cutting plane
method is very similar to that of [2], with a special rule to update the quadratic ap-
proximation (i.e. the primal center ŷ); this rule takes care in particular of the capacity
constraints y < c.

The constraint u ≥ 1/c that we neglected in the above development is really trou-
blesome: (3.5) would be a lot easier to solve if u were free in R

n. This is so true
that [1] developed a whole machinery (using “compound congestion functions”) to
somehow anticipate the really active part of u.

Let us finally say a word about the choice of parameters. Numerical methods
have often some parameters hard to tune, which may perceivably (or critically) in-
fluence convergence; this may have a bad influence on the robustness of the method.
Here there are only two such parameters: κ and κ ′ of Sect. 4 (barring the above-
mentioned t). They play the role of the Armijo-Goldstein parameters in classical
(smooth) optimization, which are known to have marginal influence on convergence.
The same insensitivity should be observed here; indeed, we have not even bothered
to try other values than κ = κ ′ = 0.1, which could be considered as “default” values.

Acknowledgement We are indebted to the referees, whose thorough readings and insightful comments
were decisive to improve an earlier version of this paper.

References

1. Babonneau, F., Vial, J.P.: Proximal-accpm with a nonlinear constraint and active set strategy to solve
nonlinear multicommodity flow problems. Math. Program. (2008). DOI 10.1007/s10107-007-0151-3

2. Bertsekas, D., Gafni, E.M.: Two-metric projection methods for constrained optimization. SIAM
J. Control Optim. 22, 936–964 (1983)

3. Cheney, E., Goldstein, A.: Newton’s method for convex programming and Tchebycheff approxima-
tions. Numer. Math. 1, 253–268 (1959)

4. Frangioni, A.: Solving semidefinite quadratic problems within nonsmooth optimization algorithms.
Comput. Oper. Res. 23(11), 1099–1118 (1996)

5. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117–156 (2003)
6. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3, 95–110

(1956)
7. Fukushima, M.: A nonsmooth optimization approach to nonlinear multicommodity network flow

problems. J. Oper. Res. Soc. Jpn. 27(2), 151–176 (1984)
8. Gerla, M., Fratta, L., Kleinrock, L.: The flow deviation method: an approach to store-and-forward

communication network design. Networks 3, 97–133 (1984)

http://dx.doi.org/10.1007/s10107-007-0151-3

A bundle-type algorithm for routing

9. Goffin, J.-L.: The ellipsoid method and its predecessors. In: Contesse, L., Correa, R., Weintraub, A.
(eds.) Recent Advances in System Modelling and Optimization. Lecture Notes in Control and Infor-
mation Sciences, vol. 87. Springer, Berlin (1984)

10. Goffin, J.-L., Gondzio, J., Sarkissian, R., Vial, J.-P.: Solving nonlinear multicommodity flow problems
by the analytic center cutting plane method. Math. Program. 76, 131–154 (1997)

11. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Hei-
delberg (1993). Two volumes

12. Kelley, J.E.: The cutting plane method for solving convex programs. J. SIAM 8, 703–712 (1960)
13. Kiwiel, K.C.: A dual method for certain positive semidefinite quadratic programming problems.

SIAM J. Sci. Stat. Comput. 10(1), 175–186 (1989)
14. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math.

Program. 46(1), 105–122 (1990)
15. Kiwiel, K.C.: A Cholesky dual method for proximal piecewise linear programming. Numer. Math.

68, 325–340 (1994)
16. Kiwiel, K.C., Larsson, T., Lindberg, P.O.: Lagrangian relaxation via ballstep subgradient methods.

Math. Oper. Res. 32(3), 669–686 (2007)
17. Lemaréchal, C.: Lagrangian relaxation. In: Jünger, M., Naddef, D. (eds.) Computational Combinato-

rial Optimization, pp. 112–156. Springer, Heidelberg (2001)
18. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable

forms. Math. Program. 76(3), 393–410 (1997)
19. Lemaréchal, C., Strodiot, J.-J., Bihain, A.: On a bundle method for nonsmooth optimization. In: Man-

gasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, vol. 4, pp. 245–282.
Academic Press, New York (1981)

20. Lemaréchal, C., Nemirovskii, A.S., Nesterov, Y.E.: New variants of bundle methods. Math. Program.
69, 111–148 (1995)

21. Mahey, P., Ouorou, A., LeBlanc, L., Chifflet, J.: A new proximal decomposition algorithm for routing
in telecommunication networks. Networks 31, 227–238 (1998)

22. McBride, R.D.: Advances in solving the multicommodity-flow problem. Interfaces 28(2), 32–41
(1998)

23. Moré, J.J.: Recent developments in algorithms and software for trust region methods. In: Bachem,
A., Grötschel, M., Korte, B. (eds.) Mathematical Programming, the State of the Art, pp. 258–287.
Springer, Berlin (1983)

24. Ouorou, A., Mahey, P., Vial, J.-P.: A survey of algorithms for convex multicommodity flow problems.
Manag. Sci. 47(1), 126–147 (2000)

25. Pinar, M.C., Zenios, S.A.: Parallel decomposition of multicommodity network flows using a linear-
quadratic penalty algorithm. ORSA J. Comput. 4(3), 235–249 (1992)

26. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual
idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992)

27. Schultz, G.L., Meyer, R.R.: An interior point method for block angular optimization. SIAM J. Optim.
1(4), 583–602 (1991)

28. Wolfe, P.: Convergence theory in nonlinear programming. In: Abadie, J. (ed.) Integer and Nonlinear
Programming, pp. 1–36. North-Holland, Amsterdam (1970)

	A bundle-type algorithm for routing in telecommunication data networks
	Abstract
	Introduction
	The model
	Numerical solution methods: outline
	The proposed algorithm

	Lagrangian relaxation
	Model of the dual function
	Ascent steps, null-steps and backtracking
	Toward primal recovery: the aggregate linearization
	The algorithm
	Dual convergence
	Case of infinitely many ascent steps
	Case of finitely many ascent steps

	Primal recovery
	Numerical illustrations
	Putting the method in perspective
	(i) Field of applicability.
	(ii) Other variants.
	(iii) Convergence theory.
	(iv) Numerical efficiency.
	(v) Implementation questions.

	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

